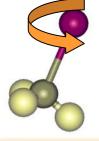
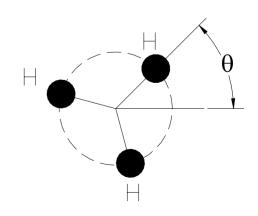
The Quantum Rotations of Confined Methyl Iodide

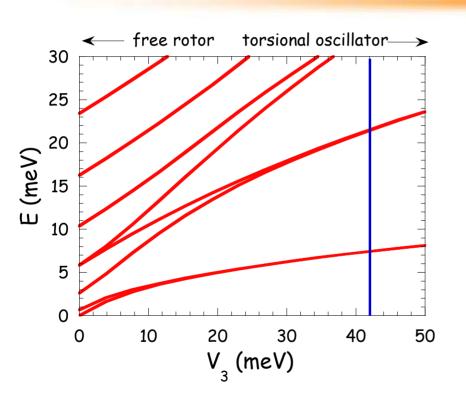
Robert M. Dimeo

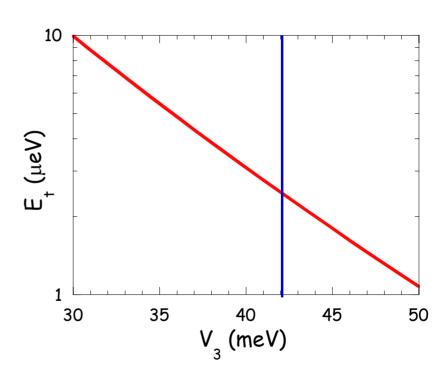

NIST Center for Neutron Research Gaithersburg, MD 20899

- Introduction
- Bulk and disordered CH₃I dynamics
- Confined CH₃I dynamics
- · Conclusions


Introduction

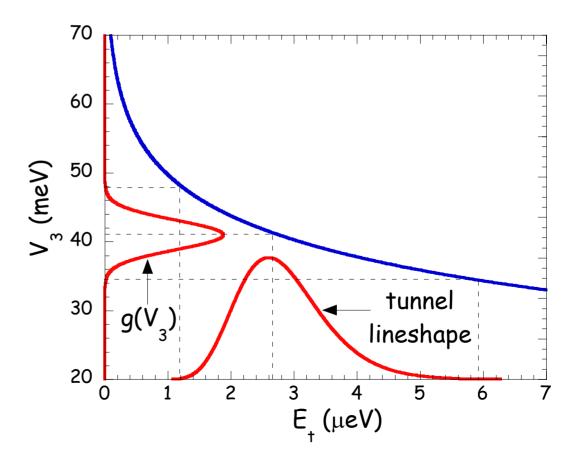
- Confinement induces disorder in adsorbed solids: CH_4 in CPG^1 , CH_3I in Geltech², H_2 in vycor³, ...
- Adsorbate-surface interactions and modified adsorbateadsorbate interactions lead to changes in molecular dynamics.
- Sensitivity of rotational tunneling to molecular environment makes rotational tunneling spectroscopy a useful probe of confinement induced disorder.
 - 1. *C.Gutt et.al.*, PRB **59**, 8607 (1999).
- 2. R.M.Dimeo and D.A.Neumann, PRB 63, 014301 (2001).
- 3. D.W.Brown et.al., PRB **59**, 13258 (1999).


Bulk CH3I Dynamics

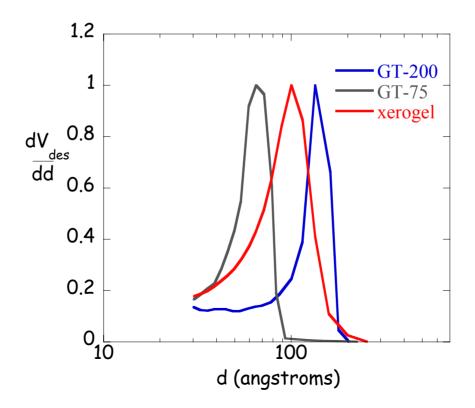


- Quantum rotations, librations, tunneling about main molecular axis
- Three-fold barrier hinders reorientation: $H = -B \frac{d^2}{d\theta^2} + \frac{V_3}{2} (1 \cos 3\theta)$
- θ : angular coordinate for methyl group
- B = 655 μ eV, V_3 =42 meV in the bulk¹

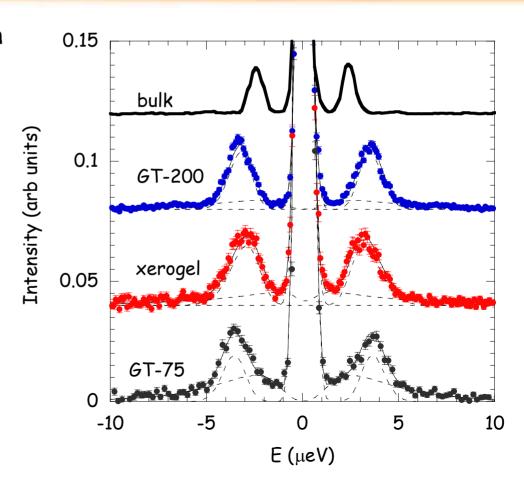
Bulk CH3I Dynamics



Tunneling energy very sensitive to the barrier height!


Disordered CH3I Dynamics

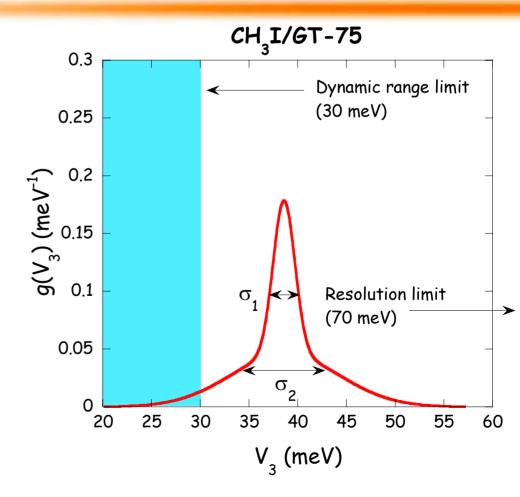
- $g(V_3)$: distribution of barrier heights
- Symmetric distribution of barrier heights leads to asymmetric tunneling lineshape



Porous Media

sample	SA (m²/g)	<d>(nm)</d>	σ _{PSD} (nm)
<i>G</i> T-75	464	6.5	3.0
xerogel	402	10.0	7.6
<i>G</i> T-200	215	14.4	4.5

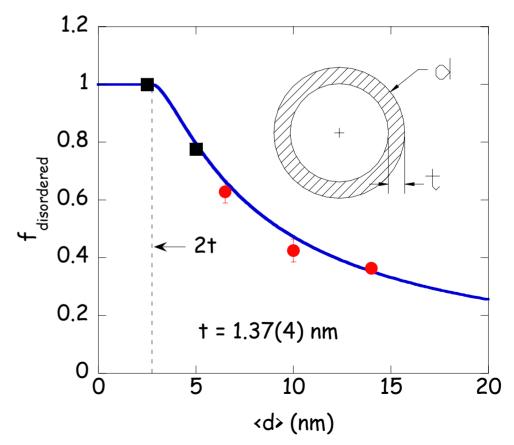
- All measurements performed on HFBS at NIST Center for Neutron Research
- T = 5 K, Q=1.42 A^{-1}
- Two Gaussian components of $g(V_3)$ used in fit
- Narrow: molecules near center of pore
- Broad: closer to pore wall

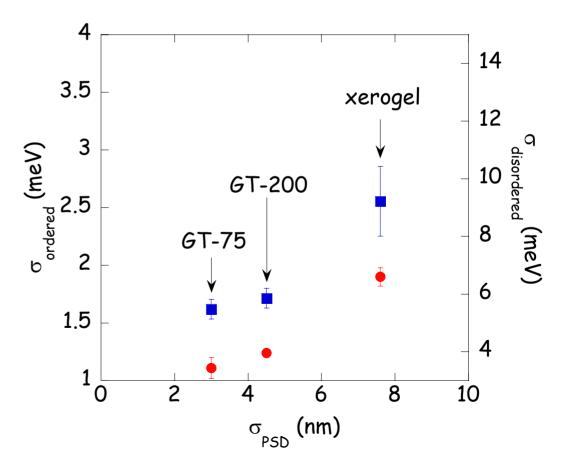


Barrier height distribution used in fits:

$$g(V_3) = \sum_{i=1}^{2} \frac{f_i}{\sqrt{2\pi\sigma_i^2}} exp\left[-\frac{1}{2}\left(\frac{V_3 - V_{3,i}}{\sigma_i}\right)^2\right] \quad \text{for } 0.2$$

$$f_1 + f_2 = 1$$


$$\text{for } 0.1$$


- Relative intensities depend on mean pore diameter
- Simple two-component model:

$$f_{disordered} = \frac{\pi r^2 - \pi (r - t)^2}{\pi r^2}$$
$$= 2 \left(\frac{2t}{\langle d \rangle}\right) - \left(\frac{2t}{\langle d \rangle}\right)^2$$

- Thickness of "disordered layer":
 1.37(4) nm (~3 molecules)
- Result insensitive to pore size distribution widths.

- Widths of each Gaussian component of $g(V_3)$ depends on width of pore size distribution.
- No correlation with the mean pore diameter.

· Simple model associates a barrier with a particular pore diameter.

$$V_3 = V_3(d)$$

• Predicts that widths of $g(V_3)$ components correlated with width of pore size distribution...ok

$$\sigma_{\text{V}_3} = \left| \frac{\partial \text{V}_3}{\partial \text{d}} \right| \sigma_{\text{PSD}}$$

 Predicts that barrier height distribution related to pore size distribution...

$$g(V_3) = P_{pore}(d) \left| \frac{\partial V_3}{\partial d} \right|^{-1}$$

Barrier height not a simple integral over the pore size distribution.

Conclusions

- Two-component model describes the relative weights of each of the components of $g(V_3)$ based solely on d.
- Widths of components of $g(V_3)$ correlated with width of $P_{pore}(d)$
- A single barrier height cannot be associated with a single pore diameter.
- $g(V_3)$ cannot be expressed as a simple integral over the pore size distribution.
- One possibility is adsorbate-surface interactions. CH_3I is polar and porous glass surfaces are hydroxylated.

Acknowledgments

Yvonne Glanville-Pennsylvania State University
Dan Neumann-NIST Center for Neutron Research
Dennis Minor-NIST Ceramics division

National Science Foundation: DMR-0086210 and DMR-9970126

POSTDOCTORAL OPPORTUNITY! NIST CENTER FOR NEUTRON RESEARCH

Physics
Chemistry
Biology
Materials science
and engineering

Applications due January 2003 Decisions mid-March Starting dates after July 2003 Eligibility limited to U.S. Citizens

Inquiries: dan@nist.gov